Monday, 30 October 2017

Weighted Moving Average In R


Linear-gewichteter gleitender Durchschnitt DEFINITION von linear gewichtetem gleitendem Durchschnitt Ein Typ von gleitendem Durchschnitt, der den jüngsten Preisdaten eine höhere Gewichtung zuweist als der gängige einfache gleitende Durchschnitt. Dieser Durchschnitt wird berechnet, indem jeder der Schlusskurse über einen bestimmten Zeitraum genommen und mit seiner bestimmten Position in der Datenreihe multipliziert wird. Sobald die Positionen der Zeiträume berücksichtigt sind, werden sie summiert und durch die Summe der Anzahl von Zeitperioden dividiert. BREAKING DOWN Linear Weighted Moving Average Zum Beispiel wird in einem 15-Tage linear gewichteten gleitenden Durchschnitt der heutige Schlusskurs mit 15, gestern um 14 multipliziert und so weiter bis zum Tag 1 im Periodenbereich. Diese Ergebnisse werden dann addiert und durch die Summe der Multiplizierer (15 14 13 3 2 1 120) dividiert. Der linear gewichtete gleitende Durchschnitt war eine der ersten Antworten, die den jüngsten Daten eine größere Bedeutung beimessen. Die Popularität dieses gleitenden Durchschnitts wurde durch den exponentiellen gleitenden Durchschnitt verringert. Aber trotzdem erweist es sich immer noch als sehr nützlich. Moving Averages in R Nach meinem besten Wissen hat R keine eingebaute Funktion, um gleitende Durchschnitte zu berechnen. Mit der Filterfunktion können wir jedoch eine kurze Funktion für gleitende Mittelwerte schreiben: Wir können die Funktion auf beliebigen Daten verwenden: mav (data) oder mav (data, 11), wenn wir eine andere Anzahl von Datenpunkten angeben wollen Als die Standard-5-Plotterarbeiten wie erwartet: plot (mav (data)). Zusätzlich zu der Anzahl der Datenpunkte, über die gemittelt wird, können wir auch das Seitenargument der Filterfunktionen ändern: sides2 verwendet beide Seiten, Seiten1 verwendet nur vergangene Werte. Share this: Post navigation Kommentar Navigation Kommentar navigationWeight Moving Averages: Die Grundlagen Im Laufe der Jahre haben Techniker zwei Probleme mit dem einfachen gleitenden Durchschnitt gefunden. Das erste Problem liegt im Zeitrahmen des gleitenden Durchschnitts (MA). Die meisten technischen Analysten glauben, dass Preis-Aktion. Der Eröffnungs - oder Schlussaktienkurs, reicht nicht aus, um davon abhängen zu können, ob Kauf - oder Verkaufssignale der MAs-Crossover-Aktion richtig vorhergesagt werden. Zur Lösung dieses Problems weisen die Analysten den jüngsten Preisdaten nun mehr Gewicht zu, indem sie den exponentiell geglätteten gleitenden Durchschnitt (EMA) verwenden. (Erfahren Sie mehr bei der Exploration der exponentiell gewogenen gleitenden Durchschnitt.) Ein Beispiel Zum Beispiel, mit einem 10-Tage-MA, würde ein Analytiker den Schlusskurs des 10. Tag nehmen und multiplizieren Sie diese Zahl mit 10, der neunte Tag um neun, der achte Tag um acht und so weiter auf die erste der MA. Sobald die Summe bestimmt worden ist, würde der Analytiker dann die Zahl durch die Addition der Multiplikatoren dividieren. Wenn Sie die Multiplikatoren des 10-Tage-MA-Beispiels hinzufügen, ist die Zahl 55. Dieses Kennzeichen wird als linear gewichteter gleitender Durchschnitt bezeichnet. (Für verwandte Themen lesen Sie in Simple Moving Averages machen Trends Stand Out.) Viele Techniker sind fest davon überzeugt, in der exponentiell geglättet gleitenden Durchschnitt (EMA). Dieser Indikator wurde auf so viele verschiedene Weisen erklärt, dass er Studenten und Investoren gleichermaßen verwirrt. Vielleicht die beste Erklärung kommt von John J. Murphys Technische Analyse der Finanzmärkte, (veröffentlicht von der New York Institute of Finance, 1999): Der exponentiell geglättete gleitende Durchschnitt behebt beide Probleme mit dem einfachen gleitenden Durchschnitt verbunden. Erstens weist der exponentiell geglättete Durchschnitt den neueren Daten ein größeres Gewicht zu. Daher ist es ein gewichteter gleitender Durchschnitt. Doch während es den vergangenen Preisdaten eine geringere Bedeutung zuweist, enthält es in seiner Berechnung alle Daten in der Lebensdauer des Instruments. Zusätzlich ist der Benutzer in der Lage, die Gewichtung anzupassen, um ein größeres oder geringeres Gewicht zu dem letzten Tagespreis zu ergeben, der zu einem Prozentsatz des vorherigen Tageswertes addiert wird. Die Summe der beiden Prozentwerte addiert sich zu 100. Beispielsweise könnte dem letzten Tagespreis ein Gewicht von 10 (.10) zugewiesen werden, das zum vorherigen Tagegewicht von 90 (.90) addiert wird. Das ergibt den letzten Tag 10 der Gesamtgewichtung. Dies wäre das Äquivalent zu einem 20-Tage-Durchschnitt, indem die letzten Tage Preis einen kleineren Wert von 5 (.05). Abbildung 1: Exponentiell geglättete gleitende Durchschnittswerte Die obige Grafik zeigt den Nasdaq Composite Index von der ersten Woche im Aug. 2000 bis zum 1. Juni 2001. Wie Sie deutlich sehen können, ist die EMA, die in diesem Fall die Schlusskursdaten über eine Neun-Tage-Zeitraum, hat endgültige Verkaufssignale am 8. September (gekennzeichnet durch einen schwarzen Pfeil nach unten). Dies war der Tag, an dem der Index unter dem Niveau von 4.000 unterbrach. Der zweite schwarze Pfeil zeigt ein anderes Bein, das die Techniker tatsächlich erwartet hatten. Der Nasdaq konnte nicht genug Volumen und Interesse von den Kleinanlegern erzeugen, um die 3.000 Marke zu brechen. Danach tauchte es wieder zu Boden, um 1619.58 am 4. April. Der Aufwärtstrend vom 12. April ist durch einen Pfeil markiert. Hier schloss der Index bei 1.961,46, und Techniker begannen zu sehen, institutionelle Fondsmanager ab, um einige Schnäppchen wie Cisco, Microsoft und einige der energiebezogenen Fragen abholen. (Lesen Sie unsere verwandten Artikel: Moving Average Umschläge: Raffinieren ein beliebtes Trading-Tool und Moving Average Bounce.)

No comments:

Post a Comment